

ARTICLE

DOI: 10.1038/s41467-018-02876-y

OPEN

Biological methane production under putative Enceladus-like conditions

Ruth-Sophie Taubner^{1,2}, Patricia Pappenreiter³, Jennifer Zwicker⁴, Daniel Smrzka⁴, Christian Pruckner¹, Philipp Kolar¹, Sébastien Bernacchi⁵, Arne H. Seifert⁵, Alexander Krajete⁵, Wolfgang Bach⁶, Jörn Peckmann ^{4,7}, Christian Paulik ³, Maria G. Firneis², Christa Schleper¹ & Simon K.-M.R. Rittmann ¹

The detection of silica-rich dust particles, as an indication for ongoing hydrothermal activity, and the presence of water and organic molecules in the plume of Enceladus, have made Saturn's icy moon a hot spot in the search for potential extraterrestrial life. Methanogenic archaea are among the organisms that could potentially thrive under the predicted conditions on Enceladus, considering that both molecular hydrogen (H₂) and methane (CH₄) have been detected in the plume. Here we show that a methanogenic archaeon, *Methanothermococcus okinawensis*, can produce CH₄ under physicochemical conditions extrapolated for Enceladus. Up to 72% carbon dioxide to CH₄ conversion is reached at 50 bar in the presence of potential inhibitors. Furthermore, kinetic and thermodynamic computations of low-temperature serpentinization indicate that there may be sufficient H₂ gas production to serve as a substrate for CH₄ production on Enceladus. We conclude that some of the CH₄ detected in the plume of Enceladus might, in principle, be produced by methanogens.

¹Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1090 Vienna, Austria. ² Department of Astrophysics, Universität Wien, 1180 Vienna, Austria. ³ Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, 4040 Linz, Austria. ⁴ Department of Geodynamics and Sedimentology, Center for Earth Sciences, Universität Wien, 1090 Vienna, Austria. ⁵ Krajete GmbH, 4020 Linz, Austria. ⁶ Geoscience Department, Universität Bremen, 28359 Bremen, Germany. ⁷ Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany. Correspondence and requests for materials should be addressed to S.K.-M.R.R. (email: simon.rittmann@univie.ac.at)

aturn's icy moon Enceladus emits jets of mainly water (H_2O) from its south-polar region¹. Besides H_2O , the ion and neutral mass spectrometer (INMS) onboard NASA's Cassini probe detected methane (CH_4) , carbon dioxide (CO_2) , ammonia (NH_3) , molecular nitrogen (N_2) , and molecular hydrogen (H₂) in the plume². In addition, carbon monoxide (CO) and ethene (C₂H₄) were found among other substances with moderate ambiguity³⁻⁶ (Table 1). At 1608.3 \pm 4.5 kg m^{[-31}, Enceladus possesses a relatively high-bulk density for an icy moon, which leads to the assumption that a substantial part of its core consists of chondritic rocks⁷. At the boundary between the liquid water layer and the rocky core, geochemical interactions are assumed to occur at low to moderate temperatures $(<100 \text{ °C})^{2,7,8}$. The most prominent potential source of H₂ in Enceladus' interior may be oxidation of native and ferrous iron in the course of serpentinization of olivine in the chondritic core. Olivine hydrolysis at low temperatures is a key process for sustaining chemolithoautotrophic life on Earth⁹ and if H₂ is produced in significant amounts on Enceladus, then it could also serve as a substrate for biological CH₄ production. Considering that $139 \pm 28 \times 10^9$ to $160 \pm 43 \times 10^9$ kg carbon year⁻¹ of the CH₄ found in the atmosphere of Earth is emitted from natural sources¹⁰, including biological methanogenesis, the question was raised if CH4 detected in the plume of Enceladus could in principle also originate from biological activity¹¹.

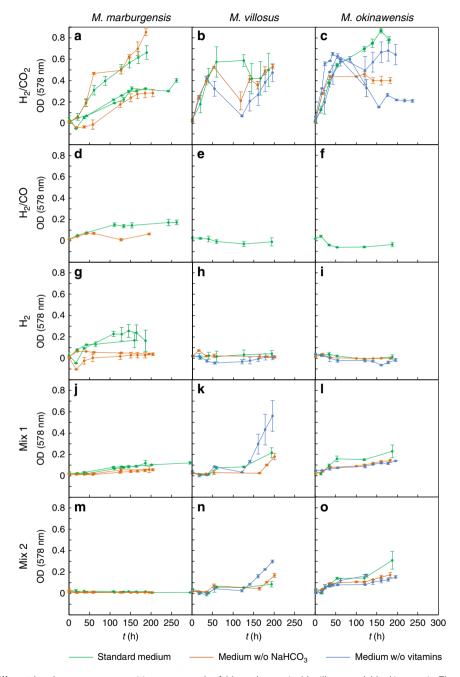
To date, methanogenic archaea are the only known microorganisms that are capable of performing biological CH₄ production in the absence of oxygen^{12,13}. On Earth, methanogens are found in a wide range of pH (4.5–10.2), temperatures (<0–122 ° C), and pressures $(0.005-759 \text{ bar})^{13}$ that overlap with conditions predicted in Enceladus' subsurface ocean, i.e., temperatures between 0 and above 90 °C⁸, pressures of 40–100 bar⁸, a pH between 8.5–10.5⁸ and 10.8–13.5¹⁴, and a salinity in the range of our oceans. While autotrophic, hydrogenotrophic methanogens might metabolise some of the compounds found in Enceladus' plume, other compounds which were detected in the plume with different levels of ambiguity, such as formaldehyde (CH₂O), methanol (CH₃OH), NH₃, CO, and C₂H₄ are known to inhibit growth of methanogens on Earth at certain concentrations^{15–17}.

Here we show that methanogens can produce CH_4 under Enceladus-like conditions, and that the estimated H_2 production rates on this icy moon can potentially be high enough to support autotrophic, hydrogenotrophic methanogenic life.

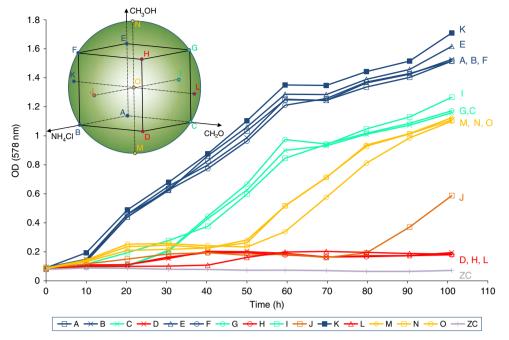
Results

Effect of gaseous inhibitors on methanogens. To investigate growth of methanogens under Enceladus-like conditions, three thermophilic and methanogenic strains, Methanothermococcus okinawensis $(65 \,^{\circ}\text{C})^{18}$, Methanothermobacter marburgensis $(65 \,^{\circ}\text{C})^{19}$, and Methanococcus villosus $(80 \,^{\circ}\text{C})^{20}$, all able to fix carbon and gain energy through the reduction of CO₂ with H₂ to form CH₄, were investigated regarding growth and biological CH₄ production under different headspace gas compositions (Table 2) on H_2/CO_2 , H_2/CO , H_2 , Mix 1 (H_2 , CO_2 , CO, CH_4 , and N_2) and Mix 2 (H₂, CO₂, CO, CH₄, N₂, and C₂H₄). These methanogens were prioritised due to their ability to grow (1) in a temperature range characteristic for the vicinity of hydrothermal vents²¹, (2) in a chemically defined medium²², and (3) at low partial pressures of H_2^{23} . Also, in the case of *M. okinawensis*, the location of isolation was taken into consideration, since the organism was isolated from a deep-sea hydrothermal vent field at Iheya Ridge in the Okinawa Trough, Japan, at a depth of 972 m below sea level¹⁸, suggesting a tolerance toward high pressure.

Species ^a	Volume mixing ratio						
	Waite et al. 2006 ³	Waite et al. 2009 ⁴	Waite et al. 2011 ²⁵	Perry et al. 2015 ²⁶	Bouquet et al. 2015 ⁵	Waite et al. 2017 ^{b,2}	
H ₂ O	90.7-91.5	90.0 ± 1.0	92.0 ± 3.0	>90	87	96-99	
CO ₂	3.14-3.26	5.3 ± 0.1	0.8 ± 0.3	$\textbf{0.6} \pm \textbf{0.2}$	0.52	0.3-0.8	
CO	(3.29-4.27)	(4.4)	<1.5		≤0.64		
H ₂		(39)	<3.4 ± 1.0	1-5	11	0.4-1.4	
CH ₂ O		0.31 ± 0.01	<0.032				
CH₃OH		$\textbf{0.015} \pm \textbf{0.006}$	0.003 ± 0.002				
C_2H_4		<1.2					
H ₂ S		0.0021 ± 0.0010	0.003 ± 0.001		$\textbf{0.0021} \pm \textbf{0.0010}$		
NH₃		0.82 ± 0.02	0.8 ± 0.03	$\textbf{0.9} \pm \textbf{0.04}$	0.61	0.4-1.3	
N ₂	(3.29-4.27)	<1.1			≤0.61		
HCN		<0.74	0.7 ± 0.3		≤0.12		
CH_4	1.63-1.68	0.91 ± 0.05	0.21 ± 0.09	0.2 ± 0.1	0.19	0.1-0.3	


^a Values used in this study are marked in bold

^b These recent observations based on the data of flyby E21 lead to the assumption that H₂O is even more prominent, whereas the concentrations for the other major species (NH₃, CO₂, and CH₄) varied only slightly. The other components were categorised as minor species with moderate ambiguity (e.g., CO, N₂, C₂H₄, or CH₂O) or as potential species with high ambiguity (e.g., H₂S or CH₃OH)⁶


Table 2 Co	mposition of the dif	ferent test gases for	the low-pressure e	e low-pressure experiments		
	H ₂ (Vol%)	CO ₂ (Vol%)	CO (Vol%)	CH4 (Vol%)	N ₂ (Vol%)	C ₂ H ₄ (Vol%)
H ₂ /CO ₂	80.097	19.903	_	_	_	_
H ₂ /CO ₂ H ₂ /CO	80.290	_	19.710	_	_	_
H ₂	99.999	_	_	_	_	_
Mix 1	22.900	19.490	27.790	14.430	15.390	_
Mix 2	22.430	19.210	28.151	14.510	12.410	3.289

While *M. okinawensis, M. marburgensis*, and *M. villosus* all showed growth on H_2/CO_2 to similar optical densities, no growth of *M. marburgensis* could be observed when C_2H_4 (Mix 2) was supplied in the headspace (Fig. 1). Growth of both *M. villosus* and *M. okinawensis* was observed even when CO and C_2H_4 were both present in the headspace gas. However, while *M. villosus* showed prolonged lag phases and irregular growth under certain conditions, *M. okinawensis* grew stably and reproducibly on the different gas mixtures without extended lag phases (Fig. 1).

As expected, the final optical densities did not reach those of the experiments with H_2/CO_2 , likely because in Mix 1 and Mix 2 lower absolute amounts of convertible gaseous substrate (H_2/CO_2) were available compared to the growth under pure H_2/CO_2 . Consequently, growth kinetics showed a different, gaslimited linear inclination in the closed batch setup when using Mix 1 and Mix 2^{22,24}. Due to its reproducible growth, *M. okinawensis* was chosen for more extensive studies on biological CH₄ production under putative Enceladus-like conditions.

Fig. 1 Influence of the different headspace gas compositions on growth of *M. marburgensis*, *M. villosus*, and *M. okinawensis*. The error bars show standard deviations calculated from triplicates. OD curves of **a**, **d**, **g**, **j**, **m** *M. marburgensis*, **b**, **e**, **h**, **k**, **n** *M. villosus* and **c**, **f**, **i**, **l**, **o** *M. marburgensis* for **a**-**c** H_2/CO_2 , **d**-**f** H_2/CO , **g**-**i** H_2 , **j**-**l** Mix 1, and **m-o** Mix 2. Growth of *M. marburgensis* was inhibited by the presence of C_2H_4 (see Table 2 for detailed gas composition). Only *M. marburgensis* seemed to be able to use sodium hydrogen carbonate (supplied in the medium) as C-source in case of a lack of CO_2 (H_2 or H_2/CO as sole gas in the headspace). Both, *M. villosus* and *M. okinawensis* showed growth when Mix 1 and Mix 2 were applied to the serum bottle headspace; however, *M. villosus* exhibited extended lag phases. The dips in the graphs **b**, **c** were caused by substrate limitation due to depletion of serum bottle headspace of H_2/CO_2 at high-optical cell densities

Fig. 2 Schematic of the experimental setting and DoE raw data growth curves showing OD measurements. The DoE is based on a central composite design (figure in the upper left corner). NH_4Cl , CH_2O , and CH_3OH were used as factors during the experiment and systematically varied in a multivariate design space (see Supplementary Table 1 for the concrete values). Each of the factors setting was examined in triplicates. The centre point (O) was examined in quintuplicates. The colours of the dots and the letters of the figure in the upper left corner correspond to the growth curves. The line labelled ZC represents the optical density of a corresponding zero control experiment, which was done with the same medium as the experiments labelled with O (central point), but without inoculum. The different colours represent different performances. For better readability, the error bars in this diagram were excluded, which were in a standard deviation range between 0.0009 and 0.1544. According to statistical selection criteria three experiments (one experiment F and two experiments O) were excluded from ANOVA analysis (Supplementary Table 2)

Gas phase	P _{H2} (bar) ^a	P _{CO2} (bar) ^a	Concentration (H_2 , mol L ⁻¹)	Concentration (CO ₂ , mol L ⁻¹)
120 mL bottles (2 bar)				
H ₂ /CO ₂ ^a	2.40	0.60	1.52 × 10 ⁻³	7.73 × 10 ⁻³
H_2/CO^a	2.41		1.52 × 10 ⁻³	
H_2^{a}	3.00		1.89 × 10 ⁻³	
Mix 1 ^a	0.69	0.58	4.34 × 10 ⁻⁴	7.57 × 10 ⁻³
Mix 2 ^a	0.67	0.58	4.25×10^{-4}	7.46 × 10 ⁻³
0.7 L reactor pressure tests				
H_2/CO_2^{b} (~10 bar)	8.00	2.00	5.05 × 10 ⁻³	2.59 × 10 ⁻²
H_2/CO_2^{b} (~20 bar)	16.00	4.00	1.01 × 10 ⁻²	5.18 × 10 ⁻²
H_2/CO_2^{-b} (~50 bar)	40.00	10.00	2.53 × 10 ⁻²	1.29 × 10 ⁻¹
H ₂ /CO ₂ /N ₂ ^c (~20 bar)	8.00	2.00	5.05 × 10 ⁻³	2.59 × 10 ⁻²
$H_2/CO_2/N_2^{c}$ (~90 bar)	36.00	9.00	2.27 × 10 ⁻²	1.17 × 10 ⁻¹
2.0 L reactor pressure and inh	ibitor tests I			
Mix ^d (~10 bar)	5.60	0.70	3.53 × 10 ⁻³	9.07 × 10 ⁻³
Mix ^d (~25 bar)	10.40	1.20	6.57 × 10 ⁻³	1.55 × 10 ⁻²
H ₂ /CO ₂ ^b (~20 bar)	16.30	4.00	1.03 × 10 ⁻²	5.18 × 10 ⁻²
Mix ^d (~50 bar)	27.50	3.10	1.74 × 10 ⁻²	4.01 × 10 ⁻²
2.0 L reactor pressure and inh	ibitor tests II			
Mix ^d (~10 bar)	5.90	0.70	3.72 × 10 ⁻³	9.06 × 10 ⁻³
Mix ^d (~25 bar)	11.00	1.20	6.94 × 10 ⁻³	1.55 × 10 ⁻²
H ₂ /CO ₂ ^b (~20 bar)	16.30	4.00	1.03 × 10 ⁻²	5.18 × 10 ⁻²
Mix ^d (~50 bar)	27.70	3.30	1.75 × 10 ⁻²	4.27×10^{-2}
Cassini ^e				
1 bar	0.50	0.10	3.18×10^{-4}	1.31 × 10 ⁻³
50 bar	25.21	5.04	1.59 × 10 ⁻²	6.53 × 10 ⁻²

^c For the H₂/CO₂/N₂ experiments a ratio of 4:1:5 was applied

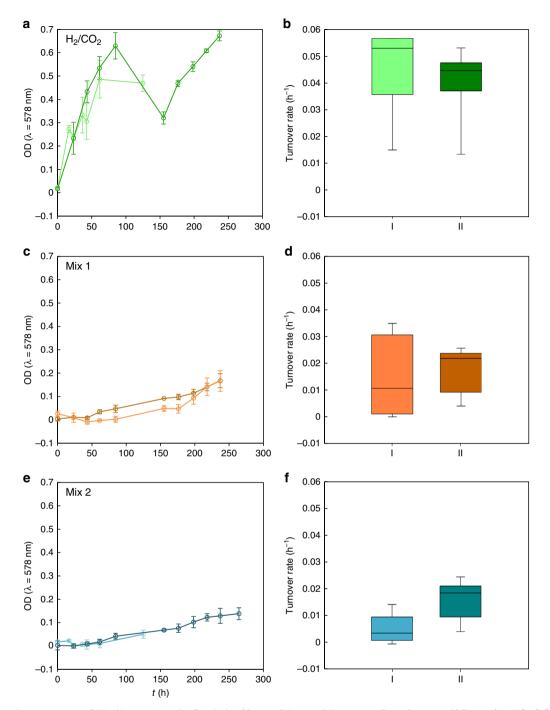
^d Detailed composition of the gases can be found in Table 4

e For the Cassini estimations, a hydrostatic pressure assumed to prevail in the Enceladus' ocean (50 bar) was applied. H₂ and CO₂ mixing ratio was taken from Table 1

Table 4 Gas	composition	of experiments	performed in the
2.0 L bioread	tor		

	N2 (Vol%)	H2 (Vol%)	CO ₂ (Vol%)	CO (Vol%)	C₂H₄ (Vol%)
2.0 L reactor press	ure and inhil	bitor tests I			
20 bar (H ₂ /CO ₂)		80.29	19.71		
10 bar	31.43	53.33	6.67	4.76	3.81
25 bar	42.91	42.11	4.86	4.45	5.67
50 bar	32.67	55.11	6.21	3.01	3.01
2.0 L reactor press	ure and inhil	bitor tests II			
20 bar (H_2/CO_2)		80.30	19.70		
10 bar	29.25	55.66	6.60	4.72	3.77
25 bar	41.43	43.82	4.78	4.38	5.58
50 bar	32.41	55.07	6.56	2.98	2.98

M. okinawensis tolerates Enceladus-like conditions at 2 bar. Growth and turnover rates (calculated via the decrease in headspace pressure) of *M. okinawensis* cultures were determined in the presence of selected putative liquid inhibitors detected in Enceladus' plume (NH₃, given as NH₄Cl, CH₂O, and CH₃OH). While growth of *M. okinawensis* could still be observed at the highest concentration of NH₄Cl added to the medium (16.25 g L⁻¹ or 0.30 mol L⁻¹), the organism grew only in the presence of up to 0.28 mL L⁻¹ (0.01 mol L⁻¹) CH₂O. This is less than, but importantly still in the same order of magnitude of, the observed maximum value of 0.343 mL L⁻¹ CH₂O detected in the plume²⁵. Growth and CH₄ production of *M. okinawensis* in closed batch cultivation was shown at CH₃OH and NH₄Cl concentrations exceeding those reported for Enceladus' plume^{4,5,25,26}.


To explore how the presence of these inhibitors might influence growth and turnover rates of M. okinawensis, we have applied these compounds at various concentrations in a multivariate design space setting (Design of Experiment (DoE)). At different concentrations of CH2O, CH3OH, and NH4Cl, M. okinawensis cultures showed growth (Fig. 2) and turnover rates from 0.015 ± 0.012 to 0.084 ± 0.018 h⁻¹ (Supplementary Fig. 1; experiments L and K in Fig. 2). CH₃OH amendments at concentrations between 9.09 and 210.91 $\mu L\,L^{-1}$ (0.22–5.21 mmol L^{-1}) did not reduce or improve growth of *M. okinawensis* (Fig. 2 and Supplementary Tables 1 and 2). Compared to the highest applied CH₂O concentration, the turnover rate of *M. okinawensis* was ~5.6-fold higher at the lowest tested concentration. The results of this experiment indicated that M. okinawensis possessed a physiological tolerance towards a broad multivariate concentration range of CH2O, CH3OH, and NH4Cl and was able to perform the autocatalytic conversion of H₂/CO₂ to CH₄ while gaining energy for growth.

We used the mean liquid inhibitor concentrations for CH₂O determined in the DoE experiment (DoE centre points) and Enceladus-like concentrations for CH₃OH and NH₄Cl (Supplementary Table 3) to test growth and turnover rates of M. okinawensis, using different gases in the headspace (H₂/CO₂, Mix 1, and Mix 2 (Fig. 3)). Under all tested headspace gas compositions, M. okinawensis showed gas-limited growth (max. OD values of 0.67 ± 0.02 , 0.17 ± 0.03 , and 0.13 ± 0.03 after ~237 h for H₂/CO₂, Mix 1 and Mix 2, respectively). The calculated turnover rates correlated with the different convertible amounts of H₂/CO₂ in Mix 1 and Mix 2. Hence, M. okinawensis was able to grow and to convert H₂/CO₂ to CH₄ when CH₂O, CH₃OH, NH₄Cl, CO and C₂H₄ were present in the growth medium at the concentrations calculated from Cassini's INMS data (assuming 1 bar, compare Tables 1 and 2). The mixing ratios of these putative inhibitors were based on INMS data^{4,5,25,26} but higher than those calculated by using the most recent Cassini data^{2,6} (Table 1). This demonstrates that growth and biological CH_4 production of *M. okinawensis* is possible even at higher inhibitor concentrations.

M. okinawensis tolerates Enceladus-like conditions up to 50 bar. Due to the fact that methanogens on Enceladus would possibly need to grow at hydrostatic pressures up to 80 bar⁸ and beyond, the effect of high pressure on the conversion of head-space gas for *M. okinawensis* was examined in a pressure-resistant closed batch bioreactor. Headspace H₂/CO₂ conversion and CH₄ production was examined at 10, 20, 50, and 90 bar, either using H₂/CO₂ in a 4:1 ratio or applying H₂/CO₂/N₂ in a 4:1:5 ratio. A gas conversion of >88% was shown for each of the experiments (Supplementary Fig. 2) except for the 90 bar experiment using H₂/CO₂/N₂, where the headspace gas conversion was found to be at 66.4%. However, no headspace gas conversion and CH₄ production could be detected when cultivating *M. okinawensis* at 90 bar using H₂/CO₂ only (data not shown).

Final experiments were designed to investigate headspace H_2/CO_2 conversion and CH_4 production of *M. okinawensis* according to INMS data (Table 3) and under conditions of high pressure (10.7 ± 0.1 , 25.0 ± 0.7 , and 50.4 ± 1.7 bar). Turnover rate, methane evolution rate (MER, calculated via pressure drop) and biological CH_4 production (calculated via gas chromatography measurements) for these experiments are shown in Fig. 4. When simultaneously applying putative gaseous (Table 4) and liquid inhibitors (Supplementary Table 3) under high-pressure conditions, we reproducibly demonstrated that *M. okinawensis* was able to perform H_2/CO_2 conversion and CH_4 production under Enceladus-like conditions.

Methanogenic life could be fuelled by H₂ from serpentinization. In light of these experimental findings and the presence of H_2 in Enceladus' plume², the question arose if serpentinization reactions can support a rate of H₂ production that is high enough to sustain autotrophic, hydrogenotrophic methanogenic life. To address this question, we used the PHREEQC27 code to model serpentinization-based H₂ production rates under Enceladus-like conditions (Table 5) with the assumption that the rate-limiting step of the serpentinization reaction is the dissolution of olivine. H₂ production rates are poorly constrained, as they strongly depend on assumed grain size and temperature. These rates correspond to the low end of the range of H₂ production rates, which were based on a thermal cooling and cracking model²⁸. Of the many reactions involved in serpentinization of peridotite, dissolution of the Fe(II)-bearing primary phases is a critical one²⁹, and the only one for which kinetic data are available. In the model, CO₂ reduction to CH₄ is predicted to take place once enough H₂ in the system was produced to generate thermodynamic drive for the reaction. While abiotic CH₄ production is kinetically more sluggish than olivine dissolution³⁰, biological CH₄ production is fast and may be controlled by the rate at which H₂ is supplied. The abiotic CH₄ production rates listed in Table 5 are hence also modelled such that olivine dissolution is the ratelimiting step. The results of these thermodynamic and kinetic computations show that H₂ and CH₄ production is predicted for a range of rock compositions (Table 5) and temperature conditions (Supplementary Table 4). The model system essentially represents a closed system with high-rock porosity, such as proposed for Enceladus². The computational results predict how much H₂ and CH₄ should form within the intergranular space inside Enceladus' silicate core with water-to-rock-ratios between 0.09 and 0.12 (Table 5). The serpentinization reactions are predicted to produce solutions with circumneutral to high pH between 7.3 and 11.3, as well as amounts of H₂ that greatly exceed the amount of dissolved inorganic carbon (DIC) trapped in the

Fig. 3 Growth and turnover rate of *M. okinawensis* under Enceladus-like conditions at 2 bar. **a**, **c**, **e** Growth curves $(OD_{578 nm})$ and **b**, **d**, **f** turnover rates (h^{-1}) as a measure of CH₄ production of *M. okinawensis* on **a**, **b** H₂/CO₂ (4:1), **c**, **d** Mix 1 and **e**, **f** Mix 2. For detailed composition of gases and media see Table 2 and Supplementary Table 3. I and II (light and dark colours, respectively) denote two independent experiments (each performed in triplicates, error bars = standard deviation). Enceladus-like concentrations were used for NH₄Cl and CH₃OH and mean liquid inhibitor concentrations determined in the DoE were used for CH₂O. The dip in **a** was caused by substrate limitation due to depletion of serum bottle headspace of H₂/CO₂ at high-optical cell densities

pore space. As the computations indicate that there is ample thermodynamic drive for reducing DIC to CH_4 , these results corroborate the idea that serpentinization reactions on Enceladus might fuel autotrophic, hydrogenotrophic methanogenic life. However, we would like to point out that if methanogenic life were indeed active on Enceladus, biological CH_4 production would always compete with abiotic CH_4 generation processes resulting in a mixed CH_4 production.

Discussion

In this study, we show that the methanogenic strain *M. okina-wensis* is able to propagate and/or to produce CH_4 under putative Enceladus-like conditions. *M. okinawensis* was cultivated under high-pressure (up to 50 bar) conditions in defined growth medium and gas phase, including several potential inhibitors that were detected in Enceladus' plume^{2,4,6}. The only difference between the growth conditions of *M. okinawensis* and the

Table F U

Mineral assemblage ^a	рН	H ₂ production rate (nmol g ⁻¹ L ⁻¹ d ⁻¹)	CH₄ production rate ^b (nmol g ^{−1} L ^{−1} d ^{−1})	Water: rock ratio	Mol H ₂ produced per mol olivine
Fo ₉₀ :En:Diop = 8:1:1	11.3	4.58	2.05	0.126	0.002
Fogo	8.60	4.03	1.07	0.124	0.004
Fo ₅₀	7.50	34.7	1.35	0.104	0.033
Fo ₂₀	7.29	50.7	1.32	0.094	0.053

m compartinization calculated for 50 °C and 50 ha

^a Fo₉₀ = forsteritic olivine (forsterite:fayalaite = 9:1), En = enstatite, Diop = diopside, Fo₅₀ = (Fo:Fa = 1:1), Fo₂₀ = (Fo:Fa = 2:8) ^b CH₄ production is predicted from allowing H₂ and dissolved inorganic carbon (DIC) to equilibrate readily, while H₂ production is kinetically controlled by dissolution of primary phases

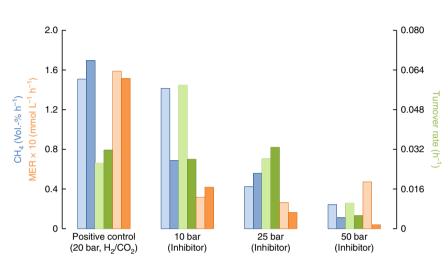


Fig. 4 CH₄ production, MER, and turnover rate of M. okinawensis under Enceladus-like conditions at high pressure. Biological CH₄ production determined by gas chromatography (blue) (Vol.-% h^{-1}) and turnover rates (h^{-1}) (green) and MER-10 (mmol $L^{-1} h^{-1}$) (red) measured from headspace gas conversion using M. okinawensis (experiment 1 in light colours, experiment 2 in dark colours) under putative Enceladus-like conditions in a 2.0 L bioreactor (for detailed medium composition, see Supplementary Table 3 and for detailed gas composition see Table 4, n = 2). The positive control experiment contained also the liquid inhibitors but only H_2/CO_2 (4:1) in the headspace. For high-pressure experiments without any inhibitors see Supplementary Fig. 2

putative Enceladus-like conditions was the lower pH value applied during the high-pressure experiments. Due to the supply of CO₂ at high-pressure in the experiments the pH decreased to ~5, while pH values between 7.3 and 13.5 were estimated for Enceladus' subsurface ocean (this study and refs. ^{8,14}).

Another point of debate might be the cultivation temperatures used for the thermophilic and hyperthermophilic methanogens in this study. The mean temperature in the subsurface ocean of Enceladus might be just above 0 °C except for the areas where hydrothermal activity is assumed to occur. In these hydrothermal settings temperatures higher than 90 °C are supposedly possible⁸, and are therefore the most likely sites for higher biological activity on Enceladus. Although methanogens are found over a wide temperature range on Earth, including temperatures around 0 °C³¹, growth of these organisms at low temperatures is observed to be slow¹³.

We estimated H₂ production rates between 4.03 and 50.7 nmol $g^{-1}L^{-1}d^{-1}$ in the course of serpentinization on Enceladus (Table 5). These estimates are rather conservative, as they are based on the assumption of small specific mineral surface areas. In a recent study, the rate of serpentinization has been estimated from a physical model that predicts how fast cracking fronts propagate down into Enceladus' core²⁸. Combining this physically controlled advancement of serpentinization $(8 \times 10^{11} \text{ g y}^{[-128]})$ with our estimates for kinetically limited rates of H₂ production leads to overall rates of $3-40 \times 10^4$ mol H₂ y⁻¹ for Enceladus. Although still high enough to support biological methanogenesis, these rates are orders of magnitude lower than the previously suggested 10×10^8 mol H₂ y^[-128] assuming that the speed of cracking front propagation controls the rate of H₂

production. We hence suggest that reaction kinetics may play an important role in determining the overall H₂ production rate on Enceladus. Our computed steady-state H₂ production rates are lower than the $1-5 \times 10^9 \text{ mol H}_2 \text{ y}^{-1}$ estimated from Cassini data². This apparent discrepancy in flux rates can be reconciled if the Enceladus plume was a transient (i.e., non-steady state) phenomenon. The predicted H_2/CH_4 ratio of 2.5 (Fo₉₀:En:Diop = 8:1:1) to 4 (Fo₉₀) for the magnesian compositions of Enceladus' core (Table 5) are consistent with the relative proportions of the two gases in the plume $(0.4-1.4\% H_2, 0.1-0.3\% CH_4)^2$.

Based on our estimated H₂ production rate, we can calculate how much of the available DIC on Enceladus could be fixed into biomass through autotrophic, hydrogenotrophic methanogenesis. If we assume a typical elementary composition of methanogen biomass³², 7.13 g carbon could be fixed per g hydrogen fixed. Under optimal growth conditions, ~3%^{22,23} of the available carbon can be assimilated into biomass, and assuming that methanogens possess a molecular weight of ~30.97 g C-mol^{[-122} and that the total amount of H₂ produced would be available for the carbon and energy metabolism of autotrophic, hydrogenotrophic methanogens, a biomass production rate between 20 and 257 Cnmol $g^{-1}L^{-1}y^{-1}$ could be achieved. In another approach, we can use the actually predicted CH₄ production rates of 1.32-2.05 nmol $g^{-1} L^{-1} d^{-1}$ (Table 5) and a Gibbs energy dissipation approach in which we assume that 10% of the energy of CH4 production is fuelling biosynthesis²⁸. This yields similar numbers of biomass production rate, i.e., 28 and 56 C-nmol $g^{-1} L^{-1} y^{-1}$.

Based on our findings, it might be interesting to search for methanogenic biosignatures on icy moons in future space

missions. Methanogens produce distinct and lasting biosignatures, in particular lipid biomarkers like ether lipids and isoprenoid hydrocarbons. Other potential biomarkers for methanogens are high-nickel (Ni) concentrations (and its stable isotopes³³), as Ni is e.g., part of methyl-coenzyme M reductase, the key enzyme of biological methanogenesis²³. However, both lipid biomarkers and Ni-based biosignatures are likely only to be identifiable at the site of biological methanogenesis, and the effect of dilution with increasing distance away from the methanogen habitat is likely to prevent their use as a general marker for biological methanogenesis in Enceladus' plume or in a subsurface ocean. If, however, bubble scrubbing would occur, a process by which organic compounds and cells adhere to bubble surfaces and are carried away as bubbles rise, which was suggested to occur on Enceladus³⁴, the amount of bioorganic molecules and cells would be much higher and future lander missions could easily collect physical evidence for the presence of autotrophic, hydrogenotrophic methanogenic life on Enceladus.

Additionally, one could consider using stable isotopes of CH₄ and CO₂ and ratios of low-molecular weight hydrocarbons to evaluate the possibility of biological methanogenesis on Enceladus¹¹. But given the uncertainties on the geological and hydrogeological boundary conditions that influence the targeted isotope and molecular patterns in Enceladus' plume, such an approach is not trivial. In contrast to biological and thermogenic CH4 production, the latter resulting from the decomposition of organic matter, abiogenic CH₄ is believed to be produced by metalcatalysed Fischer-Tropsch or Sabatier type reactions under hydrothermal conditions and particularly in the course of serpentinization of ultramafic rocks³⁵. Although biologically produced CH₄ is usually characterised by its strong ¹³C depletion, growth of methanogens at high-hydrostatic pressures and high temperatures, which is typical of deep-sea hydrothermal systems, may significantly reduce kinetic isotope fractionation and result in relatively high δ^{13} C values of CH₄, hampering discrimination from non-microbial CH₄³⁶. Given such uncertainties, multiply substituted, so-called 'clumped' isotopologues of CH4 emerge as new proxy to constrain its mode of formation and to recognise formation environments like serpentinization sites³⁷.

Another approach to identify the origin of CH₄ could be CH₄/ (ethane + propane) ratios, as low ratios are typical of settings dominated by thermogenic CH4³⁸. However, this ratio may fall short to unequivocally discriminate abiogenic from biologically produced CH₄. For instance the ratio of CH₄ concentration to the sum of C_{2+} hydrocarbon concentration (C_1/C_{2+}) in the serpentinite-hosted Lost City Hydrothermal Field of 950 ± 76 was found to be most similar to ratios obtained in experiments with Fischer-Tropsch type reactions (<100->3000). Thermogenic reactions produce C1/C2+ ratios less than ~100, whereas biological methanogenesis results in ratios of 2000-13000³⁹. More than 30 years of research on CH₄ production have revealed that its biologic, thermogenic or abiogenic origin on Earth is often difficult to trace⁴⁰. However, the experimental and modelling results presented in this study together with the estimates of the physicochemical conditions on Enceladus from earlier contributions make it worthwhile to increase efforts in the search for signatures for autotrophic, hydrogenotrophic methanogenic life on Enceladus and beyond.

Methods

Estimations of Enceladus' interior structure. Due to its rather small radius, the uncompressed density of the satellite is almost equal to its bulk density, which makes a simplified model of Enceladus' interior reasonable. Enceladus was divided into a rocky core (core density of 2300–2550 kg m⁻³), a liquid water layer (density of 960–1080 kg m⁻³), and an icy shell (ice density of 850–960 kg m⁻³) and hydrostatic equilibrium was assumed. Calculations of the hydrostatic pressure based on Enceladus mass of 1.0794×10^{20} kg⁴¹ and its mean radius of 252.1 km⁴¹

Low-pressure experiments. Growth and tolerance towards putative inhibitors of the three methanogenic strains *Methanothermococcus okinawensis* DSM 14208, *Methanothermobacter marburgensis* DSM 2133, and *Methanococcus villosus* DSM 22612 were elucidated (Fig. 1). All strains were obtained from the Deutsche Stammsammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany. Growth was resolved by optical density (OD) measurements ($\lambda = 578$ nm). H₂/CO₂–CH₄ gas conversion [%], turnover rate [h⁻¹] (see Equation (2) below), and MER were calculated from the decrease of the bottle headspace pressure and/or from measuring CH₄ production in a closed batch setup^{22,24}. The headspace pressures were measured using a digital manometer (LEO1-Ei, –1... 3barrel, Keller, Jestetten, Germany) with filters (sterile syringe filters, w/0.2c µm cellulose, 514-0061, VWR International, Vienna, Austria), and cannulas (Gr 14, 0.60 × 30 mm, 23 G × 1 1/4", RX129.1, Braun, Maria Enzersdorf, Austria). The detailed setting can be seen in Fig. 3(a) in Taubner and Rittmann²². All pressure values presented in this study are indicated as relative pressure in bar.

For the experiments at 2 bar regarding CO and C₂H₄ tolerance (see Figs. 1 and 3), the strains were incubated in the dark either in a water bath (M. marburgensis and M. okinawensis, 65 ± 1 °C) or in an air bath (M. villosus, 80 ± 1 °C). The methanogens were cultivated in 50 mL of their respective chemically defined growth medium. Compositions of the different growth media of the experiments shown in Figs. 1 and 3 can be found in Supplementary Tables 3 and 5-10. The final preparation of the medium in the anaerobic culture flasks was performed in an anaerobic chamber (Coy Laboratory Products, Grass Lake, USA). Experiments were performed over a time of 210-270 h. After each incubation period, serum bottle headspace pressure measurement (in order to be unbiased, flasks were previously cooled down to room temperature), OD-sampling, and gassing with designated gas or test gas was performed. OD measurement was performed at 578 nm in a spectrophotometer (DU800, Beckman Coulter, USA). A zero control was incubated together with each individual experiment and the OD of this control was subtracted from the measured OD from the inoculated flasks each time.

For hydrogenotrophic methanogens, which utilise H₂ as electron donor for the reduction of CO₂ to produce CH₄ and H₂O as their metabolic products, the following stoichiometric reaction equation was used^{12,23,24}:

$$4H_{2(g)} + CO_{2(g)} \rightarrow CH_{4(g)} + 2H_2O_{(aq)} \quad \Delta G^0 = -135 \,\text{kJ}\,\text{mol}^{-1}.$$
 (1)

The turnover rate $[h^{-1}]$ correlates with the catalytic efficiency per unit of time, i.e., it is a way to indirectly quantify CH₄ productivity. By assuming the abovementioned chemical CO₂ methanation stoichiometry and neglecting biomass formation, the turnover rate is an equivalent method for indirect quantification of CH₄ production. It is defined as

turnover rate
$$[h^{-1}] = \frac{\Delta p}{\Delta p_{\max} \cdot \Delta t},$$
 (2)

where Δp [bar] is the difference in pressure before and after incubation, Δp_{max} [bar] is the maximal theoretical difference that would be feasible due to stoichiometric reasons²², and Δt [h] is the time period of incubation.

For the initial pressure experiments at 2 bar, the three methanogenic strains were tested under five different gas phase compositions (Table 2). A significant change in OD and turnover rate was observed between these experiments (as can be seen in Fig. 1). When Mix 1 and Mix 2 were applied, only a maximum of 22.66 \pm 0.23 Vol.-% H₂ (average, Table 2) could be converted to CH₄ and biomass.

To evaluate the influences of the potential inhibitors NH₃, CH₂O, and CH₃OH on the growth of *M. okinawensis*, several preliminary experiments were performed. For easier handling, NH₃ was substituted by NH₄Cl. Based on INMS data (Table 1) the amount of NH₄Cl was calculated according to Henry's law. For that, Henry's law constant was calculated to be 0.1084 mol m⁻³ Pa⁻¹ at 64 °C. This results in 11.6 g L⁻¹ (0.22 mol L⁻¹) NH₄Cl to have ~1% of NH₃ in the gaseous phase at equilibrium for the experiments under closed batch conditions. The influence of NH₄Cl between 0.25 and 16.25 g L⁻¹ (4.67 and 303.79 mmol L⁻¹), CH₂O between 0 to 111 µL L⁻¹ (0–4.03 mmol L⁻¹), and CH₃OH between 0 and 200 µL L⁻¹ (0–4.94 mmol L⁻¹) was tested individually. CH₂O (37 Vol.-%) and CH₃OH (98 Vol.-%)

To find an appropriate ratio for the final experiments, an experiment in a DoE setting was established. A central composite design with the parameters shown in Supplementary Table 1 and Fig. 2 was chosen. The design space is spherical with a normalised radius equal to one. Experiments A–N were done in triplicates; experiments O were performed in quintuplicate. The results of these experiments in terms of OD can be seen in Fig. 2 and in terms of turnover rate in

Supplementary Fig. 1. Each incubation time period was 10.0 ± 0.5 h. The ANOVA analysis of this study can be found in Supplementary Table 2.

The setting for the experiments under Enceladus-like conditions at 2 bar pressure included the medium described in Supplementary Table 3 and Mix 2 (Table 2) as gaseous phase. As can be seen in Fig. 3 there was a lag phase of two days, but after that continuous but slow growth was observed.

To calculate the molar concentration of H_2 and CO_2 in the medium (Table 3), Henry's law was used:

$$M = k_{\rm H} \cdot p_X, \tag{3}$$

where p_X is the partial pressure of the respective gas and k_H is Henry's constant as a function of temperature:

$$k_{\rm H} = k_{\rm H}^{\ominus} \cdot e^{\left(\frac{-\Delta_{\rm soln}\,{\rm H}}{R}\left(\frac{1}{T} - \frac{1}{T^{\ominus}}\right)\right)},\tag{4}$$

where $\Delta_{soln}H$ is the enthalpy change of the dissolution reaction. For k_{H}^{\ominus} the values 7.9×10^{-4} mol L^{-1} bar $^{-1}$ and 3.4×10^{-2} mol L^{-1} bar $^{-1}$ and for $\frac{-\Delta_{soln}H}{R}$ the values 500 K and 2400 K for H_{2} and CO₂, respectively, were used. This results in a Henry constant at 65 °C of 6.481×10^{-4} mol L^{-1} bar $^{-1}$ and 1.329×10^{-2} mol L^{-1} bar $^{-1}$ for H_{2} and CO₂, respectively.

Another potential liquid inhibitor detected in Enceladus' plume was hydrogen cyanide (HCN)^{3,4}. However, calculations on HCN stability under the assumed conditions on Enceladus show that HCN would hydrolyse into formic acid and ammonia⁴². Further investigations on the stability of HCN at different pH values and temperatures yielded similar results^{43,44}. It was therefore assumed that HCN might originate either from a very young pool, a recent aqueous melt, or from the icy matrix on Enceladus^{4,42}. Due to this reasoning and the low probability of HCN presence in the subsurface ocean of Enceladus, HCN was neglected in all growth media used to perform the experiments.

High-pressure experiments. M. okinawensis initial high-pressure experiments were performed at its optimal growth temperature of 65 ± 1 °C using a chemically defined medium (250 mL, see Supplementary Table 10 for exact composition) and a fixed stirrer speed of 100 r.p.m. in a 0.7 L stirred stainless steel Büchi reactor. Before each of the experiments, the reactor was filled with medium and the entire setting was autoclaved under CO2 atmosphere to assure sterile conditions. Thereafter, the inoculum (1 Vol.-%), the NaHCO3, L-cysteine, Na2S-9 H2O (0.5 M) and trace element solution were transferred via a previously autoclaved transfer vessel into the reactor. Then the reactor was set under pressure with the selected gas mixture (added ~5 bar in discrete steps every 10 min). The initial high-pressure experiments were performed using both an H₂/CO₂ (4:1) gas phase and an H₂/ CO₂/N₂ (4:1:5) mixture. The reactor was equipped with an online pressure (ASIC Performer pressure sensor 0-400 bar, Parker Hannifin Corporation, USA) and temperature probe (thermo element PT100, -75 °C - 350 °C, TC Mess- und Regeltechnik GmbH, Mönchengladbach, Germany). The conversion was always above 88% except for the 90 bar experiment, wherein also N₂ fixation into biomass could be assumed. Interestingly, the time until start of the conversion decreases for the H2/CO2 experiments upon an increase of headspace pressure in the initial setup. This could be an indication for a barophilic nature of this organism, but also due to the experimental closed batch setup.

Increasing p_{CO2} and associated pH change was determined using a pH probe (see Supplementary Fig. 3). This analysis showed that even a rather small p_{CO2} (2 bar) already decreases the pH from nearly neutral to >5 due to the medium composition, which is due to application of a medium with low-buffering capacity, also possibly occurring in Enceladus' subsurface ocean. However, it remains an open question if the medium on Enceladus is buffered. This would lead to higher possible p_{CO2}⁴⁵ without having a drastic influence on the reported pH. Furthermore, we calculated if NaHCO3 could be used as source of dissolved inorganic carbon and what would be the effect on the pH of the medium. Postberg et al. suggested a concentration of 0.02-0.1 mol kg⁻¹ NaCO₃ and 0.05-0.2 mol kg⁻¹ NaCl in the medium to reach a pH level between 8.5 and 9⁴⁶. Calculations on the concentrations of dissolved CO2 in the high-pressure experiments were performed by using the mole fraction of dissolved CO2 in H2O depending on pCO2. The mole fractions for p_{CO2} of 0.7, 1.2, and 3.1 bar (as used in the experiments) at 65 °C were generated by extrapolation of given values in the region of $p_{CO2} = 0-1$ bar. H_2/CO_2 conversion and CH₄ production could still be measured at 10 bar, 20 bar and 50 (i.e., $p_{CO2} = 10$) bar with H_2/CO_2 (4:1) gas phase, but no decrease in pressure was observed at 90 bar with H_2/CO_2 (4:1) gas phase (i.e., $p_{CO2} = 18$ bar) after >110 h (data not shown). It is assumed that no growth occurs under these conditions due to the high p_{CO2} (18 bar) and the associated decrease to a pH of <3, which is beyond the reported pH tolerance of M. okinawensis¹⁸.

The high-pressure experiments under Enceladus-like conditions were carried out in the presence of both gaseous and liquid inhibitors applying the optimal growth temperature of 65 ± 1 °C at individual pressures of 10, 25, and 50 bar in a stirred 2.0 L Büchi reactor at 250 r.p.m. The gas ratios of the final gas mixtures are reported in Table 4. The final liquid medium was the same as the one used in the final 2 bar experiments (incl. the liquid inhibitors, Supplementary Table 3). Due to the results from the pH experiments (Supplementary Fig. 3), the low p_{CO2} (~3 bar) was chosen to avoid a pH shift to more acidic values, which is not representative of Enceladus-like conditions. For final high-pressure experiments, the medium

volume was set to 1.1 L and M. okinawensis H₂/CO₂ grown pre cultures of an OD = 34.4 and OD = 34.5 were used as inoculums (11 mL each). Preparation of the high OD M. okinawensis suspension was performed by collecting 1 L of serum bottle grown fresh culture (OD ~0.7), centrifuging the cells at 5346×g anaerobically for 20 min (Heraeus Multifuge 4KR Centrifuge, Thermo Fisher Scientific, Osterode, Germany), and re-suspending the cells in 20 mL of freshly reduced appropriate growth medium. The gases were added into the bioreactor headspace in the following order: CO, N₂, CO₂, H₂, and C₂H₄ (5 bar every 10 min). During all highpressure experiments OD measurements were not conducted because upon reactor depressurisation cell envelopes of M. okinawensis were found to be disrupted. To determine the amount of produced CH4 in the high-pressure experiments, gas samples were taken after reducing the pressure in the reactor down to 1.36 ± 0.25 bar. The sample was stored in 120 mL serum bottles and sealed with black septa (3.0 mm, Butyl/PTFE, La Pha Pack, Langerwehe, Germany). The volumetric concentrations of CH4 was determined using a gas chromatograph (7890 A GC System, Agilent Technologies, Santa Clara, USA) equipped with a TCD detector and a 19808 ShinCarbon ST Micropacked Column (Restek GmbH, Bad Homburg, Germany)²²

To determine the CH₄ production [Vol.-% h^{-1}] shown in Fig. 4, the value of CH₄ Vol.-% was divided by the time of biological CH₄ production in h. To exclude a potential lag phase, the starting point of biological CH₄ production was set to the point in time when the decrease in pressure exceeded the initial pressure by 5% for 10 bar experiments or by 1% during the other experiments.

Serpentinization simulations. The PHREEQC²⁷ code was used to simulate serpentinization reactions from 25 to 100 °C and from 25 to 50 bar in order to assess H₂ production on Enceladus. The Amm.dat and llnl.dat databases were used for all simulations, which account for temperature and pressure dependent equilibrium constants for dissolved species and solid phases up to 100 °C and 1000 bar. Solution composition was taken from the chemical composition of erupting plume of Enceladus⁴, as the true chemistry of its subsurface sea is unknown. Dissolved concentrations of Ca^{2+} , Fe^{2+} , Mg^{2+} , and SiO_2 were assumed to be seawater-like and values from McCollom and Bach⁴⁷ were used. At the very low water-to-rock ratios of our model, the compositions of the interacting fluids will be entirely rock buffered, so that the model results are insensitive to the choice of the starting fluid composition. DIC concentration was set to 0.04 mol L^{-1} taken from Glein et al.¹⁴, who estimated a possible range of 0.005-1.2 molal DIC in Enceladus' subsurface ocean. The solid phase assemblage was composed of varying amounts of olivine, enstatite and diopside, as well as varying olivine compositions. Most planetary bodies exhibit olivine solid solutions (Mg, Fe)₂SiO₄ that are dominated by forsterite (Mg₂SiO₄). This has been shown for micrometeorites found on Earth, lunar meteorites, comets, and asteroids^{48–51}. Stony iron meteorites, such as pallasites contain forsteritic olivine with up to 20% Fe²⁺ content⁵². Olivines in chondrites show a more varied compositions ranging between 7 and 70% ferrous iron^{53,54}, to almost pure fayalite (Fe₂SiO₄)⁵⁵. A realistic assumption is that olivines on Enceladus have a more forsteritic composition that resembles those of stony iron and lunar meteorites.

A composition of Fo₉₀ was adopted for olivine. Calculations were limited to Fo₉₀, fayalite, enstatite, and diopside, as experimental data on their dissolution kinetics at high pH and low temperature are available. Kinetic rate laws were applied for forsteritic olivine, favalite, enstatite, and diopside from Wogelius and Walther^{56,57}, Daval et al.⁵⁸, Oelkers and Schott⁵⁹, and Knauss et al.⁶⁰, respectively. Dissolution rate laws for Fo₉₀ and fayalite at 100 °C were extrapolated from rate data in Wogelius and Walther⁵⁷ using the Arrhenius equation. Enstatite and diopside rate laws at 100 °C were power-law fitted from experimental data provided by Oelkers and Schott⁵⁹ and Knauss et al.⁶⁰, respectively. All rate laws are valid over a pH range from 2 to 12 at all temperatures. Kinetic rate laws were multiplied by the total surface area of each mineral present in solution in order to calculate moles of minerals dissolved per time. Surface areas of $590 \text{ cm}^2 \text{ g}^{-1}$ for Fo_{90} and fayalite⁶¹, $800 \text{ cm}^2 \text{ g}^{-1}$ for enstatite⁵⁹, and $550 \text{ cm}^2 \text{ g}^{-1}$ for diopside⁶⁰ were used. These specific surface areas have been suggested to be typical for fine-grained terrestrial rocks. We adopted these numbers in our computations, as we have no constraints on what specific surface areas in Enceladus may be. If the core of Enceladus was similar to carbonaceous chondrite, then the average mineral grain size is smaller and hence the specific surface areas greater than we assumed⁶². We choose to use fairly small specific surface areas to provide conservative estimates for H₂ production rates. Model 1 uses Fo₉₀, enstatite and diopside in a ratio of 8:1:1, model 2 uses a pure Fo₉₀ composition. The effect of ferrous iron content in olivine on H2 production rates was tested in computations where Fo50 (Fo:Fa 1:1, model 3) and Fo20 (Fo:Fa 2:8, model 4) were dissolved as the sole mineral. Fo50 and Fo20 were dissolved according to dissolution rates of Wogelius and Walther (their equation (6))⁵⁷, and for temperatures beyond 25 °C dissolution rates for fayalite were extrapolated to 50 and 100 °C after Daval et al.⁵⁸. Model 1 contained 40 mol of Fo₉₀ and 5 mol of enstatite and diopside. For models 2-4, 55 mol of Fo₉₀, Fo₅₀, and Fo20 were used. Applying these amounts yield water-to-rock-ratios between 0.09 and 0.12 (Table 5).

The most likely environmental conditions present within Enceladus are temperatures between 25 and higher than 90 °C at 25–80 bar⁸, and temperatures of 50 °C and pressures of 50 bar were chosen for the four different models. In a separate set of computations, temperatures were altered to 25 and 100 °C, and pressures were set at 25 and 100 bar. These results are shown in Supplementary

Table 4. As pressure has a negligible effect on $\rm H_2$ production, only the variations in temperature change are shown.

Data availability. The data sets analysed during the current study are available in this article and its Supplementary Information file, or from the corresponding author on request.

Received: 2 August 2017 Accepted: 4 January 2018 Published online: 27 February 2018

References

- Porco, C. C. et al. Cassini observes the active south pole of Enceladus. *Science* 311, 1393–1401 (2006).
- Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. *Science* 356, 155–159 (2017).
- Waite, J. H. et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006).
- Waite, J. H. et al. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. *Nature* 460, 487–490 (2009).
- Bouquet, A., Mousis, O., Waite, J. H. & Picaud, S. Possible evidence for a methane source in Enceladus' ocean. *Geophys. Res. Lett.* 42, 1334–1339 (2015).
- Magee, B. A. & Waite Jr, J. H. Neutral gas composition of Enceladus' plume model parameter insights from Cassini-INMS. In 48th Lunar and Planetary Science Conference, abstr. 2974 (2017).
- Sekine, Y. et al. High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. *Nat. Commun.* 6, 8604 (2015).
- Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. *Nature* 519, 207–210 (2015).
- Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P. & Templeton, A. S. Hydrogen generation from low-temperature water-rock reactions. *Nat. Geosci.* 6, 478–484 (2013).
- 10. Tian, H. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. *Nature* **531**, 225–228 (2016).
- McKay, C. P., Porco, C. C., Altheide, T., Davis, W. L. & Kral, T. A. The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. *Astrobiology* 8, 909–919 (2008).
- Liu, Y. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. in. Ann. N. Y. Acad. Sci. 1125, 171–189 (2008).
- Taubner, R.-S., Schleper, C., Firneis, M. G. & Rittmann, S. K.-M. R. Assessing the ecophysiology of methanogens in the context of recent astrobiological and planetological studies. *Life* 5, 1652–1686 (2015).
- Glein, C. R., Baross, J. A. & Waite, J. H. The pH of Enceladus' ocean. Geochim. Cosmochim. Acta 162, 202–219 (2015).
- Schink, B. Inhibition of methanogenesis by ethylene and other unsaturated hydrocarbons. *FEMS Microbiol. Lett.* 31, 63–68 (1985).
- Kato, S., Sasaki, K., Watanabe, K., Yumoto, I. & Kamagata, Y. Physiological and transcriptomic analyses of the thermophilic, aceticlastic methanogen methanosaeta thermophila responding to ammonia stress. *Microbes Environ.* 29, 162–167 (2014).
- Daniels, L., Fuchs, G., Thauer, R. K. & Zeikus, J. G. Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132, 118–126 (1977).
- Takai, K., Inoue, A. & Horikoshi, K. Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a western Pacific deep-sea hydrothermal vent system. *Int. J. Syst. Evol. Microbiol.* 52, 1089–1095 (2002).
- Schönheit, P., Moll, J. & Thauer, R. K. Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. *Arch. Microbiol.* 127, 59–65 (1980).
- Bellack, A., Huber, H., Rachel, R., Wanner, G. & Wirth, R. Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell–cell contacts. *Int. J. Syst. Evol. Microbiol.* 61, 1239–1245 (2011).
- 21. Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. *Nat. Rev. Microbiol.* **6**, 805–814 (2008).
- Taubner, R.-S. & Rittmann, S. K.-M. R. Method for indirect quantification of CH₄ production via H₂O production using hydrogenotrophic methanogens. *Front. Microbiol.* 7, 532 (2016).
- Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. *Nat. Rev. Microbiol.* 6, 579–591 (2008).
- Rittmann, S. K.-M. R., Seifert, A. & Herwig, C. Essential prerequisites for successful bioprocess development of biological CH₄ production from CO₂ and H₂. *Crit. Rev. Biotechnol.* 35, 141–151 (2015).

- 25. Waite, J. H. et al. Enceladus plume composition. In *EPSC-DPS Joint Meeting* 2011 (2011).
- Perry, M. E. et al. Inside Enceladus' plumes: the view from Cassini's mass spectrometer. In American Astronomical Society, DPS Meeting 47, abstr. 410.04 (2015).
- Parkhurst, D. L. & Appelo, C. A. J. User's Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resources Investigations Report 99–4259 (USGS, 1999).
- Steel, E. L., Davila, A. & McKay, C. P. Abiotic and biotic formation of amino acids in the Enceladus ocean. Astrobiology 17, 862–875 (2017).
- 29. Bach, W. Some compositional and kinetic controls on the bioenergetic landscapes in oceanic basement. *Front. Microbiol.* 7, 107 (2016).
- McCollom, T. M. Abiotic methane formation during experimental serpentinization of olivine. *Proc. Natl Acad. Sci. USA* 113, 13965–13970 (2016).
- 31. Cavicchioli, R. Cold-adapted archaea. Nat. Rev. Microbiol. 4, 331-343 (2006).
- Duboc, P., Schill, N., Menoud, L., Van Gulik, W. & Von Stockar, U. Measurements of sulfur, phosphorus and other ions in microbial biomass: influence on correct determination of elemental composition and degree of reduction. J. Biotechnol. 43, 145–158 (1995).
- Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. *Proc. Natl Acad. Sci. USA* 106, 10944–10948 (2009).
- Porco, C. C., Dones, L. & Mitchell, C. Could it be snowing microbes on Enceladus? Assessing conditions in its plume and implications for future missions. *Astrobiology* 17, 876–901 (2017).
- Horita, J. & Berndt, M. E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. *Science* 285, 1055–1057 (1999).
- Takai, K. et al. Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. *Proc. Natl Acad. Sci. USA* 105, 10949–10954 (2008).
- 37. Wang, D. T. et al. Nonequilibrium clumped isotope signals in microbial methane. *Science* **348**, 428 LP–428431 (2015).
- 38. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. *Chem. Geol.* **161**, 291–314 (1999).
- 39. Proskurowski, G. et al. Abiogenic hydrocarbon production at lost city hydrothermal field. *Science* **319**, 604–607 (2008).
- Etiope, G. & Sherwood Lollar, B. Abiotic methane on earth. Rev. Geophys. 51, 276–299 (2013).
- NASA. Enceladus: by the Numbers. https://solarsystem.nasa.gov/planets/ enceladus/facts (2017).
- Glein, C. R., Zolotov, M. Y. & Shock, E. L. Liquid water vs. hydrogen cyanide on Enceladus. In *American Geophysical Union, Fall Meeting*, abstract #P23B-1365 (2008).
- Sanchez, R. A., Ferbis, J. P. & Orgel, L. E. Studies in prebiodc synthesis: II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J. Mol. Biol. 30, 223–253 (1967).
- Miyakawa, S., James Cleaves, H. & Miller, S. L. The cold origin of life: A. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. *Orig. Life. Evol. Biosphys.* 32, 195–208 (2002).
- Roosen, C., Ansorge-Schumacher, M., Mang, T., Leitner, W. & Greiner, L. Gaining pH-control in water/carbon dioxide biphasic systems. *Green Chem.* 9, 455 (2007).
- Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. *Nature* 459, 1–4 (2009).
- McCollom, T. M. & Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. *Geochim. Cosmochim. Acta* 73, 856–875 (2009).
- Demidova, S. I., Nazarov, M. A., Ntaflos, T. & Brandstätter, F. Possible serpentine relicts in lunar meteorites. *Petrology* 23, 116–126 (2015).
- Kurat, G., Koeberl, C., Presper, T., Brandstätter, F. & Maurette, M. Petrology and geochemistry of Antarctic micrometeorites. *Geochim. Cosmochim. Acta* 58, 3879–3904 (1994).
- Lisse, C. M. et al. Comparison of the composition of the tempel 1 ejecta to the dust in Comet C/Hale–Bopp 1995 and YSO HD 100546. *ICARUS* 187, 69–86 (2007).
- Cruikshank, D. P. & Hartmann, W. K. The meteorite-asteroid connection: two olivine-rich asteroids. *Science* 223, 281–283 (1984).
- Buseck, P. R. & Goldstein, J. I. Olivine compositions and cooling rates of pallasitic meteorites. Bull. Geol. Soc. Am. 80, 2141–2158 (1969).
- Chizmadia, L. J., Rubin, A. E. & Wasson, J. T. Mineralogy and petrology of amoeboid olivine inclusions in CO₃ chondrites: relationship to parent-body aqueous alteration. *Meteorit. Planet. Sci.* 37, 1781–1796 (2002).
- Dodd, R. T. The petrology of chondrules in the sharps meteorite. *Contrib. Mineral. Petrol.* 31, 201–227 (1971).

- 55. Hua, X. & Buseck, P. R. Fayalite in the Kaba and Mokoia carbonaceous chondrites. Geochim. Cosmochim. Acta 59, 563-578 (1995).
- Wogelius, R. A. & Walther, J. V. Olivine dissolution at 25 °C: effects of pH, 56 CO2, and organic acids. Geochim. Cosmochim. Acta 55, 943-954 (1991).
- Wogelius, R. A. & Walther, J. V. Olivine dissolution kinetics at near-surface 57. conditions. Chem. Geol. 97, 101-112 (1992).
- 58. Daval, D. et al. The effect of silica coatings on the weathering rates of wollastonite (CaSiO₃) and forsterite (Mg₂SiO₄): an apparent paradox? In Water Rock Interaction - WRI-13 Proc. 13th International Conference on Water Rock Interaction (eds Birkle, P. & Torres-Alvarado, I. S.) 713-717 (Taylor & Francis, 2010).
- 59. Oelkers, E. H. & Schott, J. An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution. Geochim. Cosmochim. Acta 65, 1219-1231 (2001).
- 60 Knauss, K. G., Nguyen, S. N. & Weed, H. C. Diopside dissolution kinetics as a function of pH, CO₂, temperature, and time. Geochim. Cosmochim. Acta 57, 285-294 (1993).
- 61. Golubev, S. V., Pokrovsky, O. S. & Schott, J. Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25 °C. Chem. Geol. 217, 227-238 (2005).
- Bland, P. A. et al. Why aqueous alteration in asteroids was isochemical: high porosity ≠ high permeability. Earth Planet. Sci. Lett. 287, 559-568 (2009).

Acknowledgements

Barbara Reischl, MSc and Annalisa Abdel Azim, MSc are gratefully acknowledged for expert technical assistance during the closed batch experiments. We thank Dr. Jessica Koslowski for proofreading and comments on the manuscript. R.-S.T. would like to thank Mark Perry and Britney Schmidt for discussions. We also thank David Parkhust for helping with the PHREEQC code and Silas Boye Nissen for his support in the initial attempts of the serpentinization modelling. Financial support was obtained from the Österreichische Forschungsförderungsgesellschaft (FFG) with the Klimafonds Energieforschungprogramm in the frame of the BioHyMe project (grant 853615). R.-S.T. was financed by the University of Vienna (FPF-234) and a fellowship of L'Oréal Österreich

Author contributions

R.-S.T., P.P., C.Pr., P.K., and S.K.-M.R.R. performed the experiments. R.-S.T., P.P., S.B., A.H.S., C.Pa., and S.K.-M.R.R. designed the experiments. D.S. and J.Z. designed and performed PHREEQC modelling. W.B. supervised the PHREEQC modelling. R.-S.T., P.P., J.Z., D.S., S.B., A.H.S., A.K., W.B., J.P., C.Pa, M.G.F., C.S., and S.K.-M.R.R. discussed the data. R.-S.T., J.Z., D.S., W.B., J.P., C.S., and S.K.-M.R.R. wrote the manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-02876-y.

Competing interests: R.-S.T., P.P., D.S., J.Z., C.Pr., P.K., W.B., J.P., C.Pa., M.F., C.S., and S.K.-M.R.R. declare no competing financial interests. Due to an engagement in the Krajete GmbH, A.H.S., S.B., and A.K. declare competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/ reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2018